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A series of variational calculations are reported for the ethylene molecule, using ASMO LCAO 
method with CGTO's (combined Gaussian-type orbitals) as the basic atomic orbitals. The three 
electronic states, lAg(N), 3Blu(T ) and 1BI~(V ), are investigated with a special emphasis on the iBlu state. 

Es werden die Ergebnisse einer Reihe von Variationsrechnungen am Athylen-Molektil mit- 
geteilt, wobei den Rechnungen die ASMO LCAO-Methode mit CGTO's ("combined Gaussian-type 
orbitals") als Atombasisfunktionen zugrunde liegt. Untersucht werden die drei Elektronenzustiinde 
lAg(N), 3Blu(T ) und 1BI,,(V), mit besonderem Nachdruck auf dem letzteren. 

S6rie de calculs variationnels sur la mol6cule d'6thylbne en utilisant la m6thode ASMO LCAO 
avec des orbitales de type gaussien combin6 (CGTO). Etude des trois 6tats +lectroniques lAg(N), 
3BI,(T) et 1Ba,,(V) en insistant particuli6rement sur ce dernier 6tat. 

Introduction 

The present work describes some applications of the combined Gaussian-type 
orbitals (CGTO) to the theoretical study of the ethylene molecule. CG TO  is a 
set of Gaussian-type orbitals combined linearly with certain fixed coefficients 
chosen in such a way that the set can be used, as a unit, profitably in molecular 
calculations. The more detailed description will be given in the next section. 

The ethylene molecule is one of the simplest organic molecules possessing a 
double bond. Many theoretical attempts have been made to describe the electronic 
structures of the molecule in the ground and lower excited states. The work by 
Moskowitz and Harrison [ t ]  represents the most extensive effort to date based on 
Gaussian-type orbitals (GTO), while the one by Kaldor and Shavitt [2] is the 
counterpart based on Slater-type orbitals. 

In spite of these calculations, the theoretical study of the ethylene molecule is 
far from complete. Especially the knowledge about the wave function of the first 
~Blu state still remains very unsatisfactory. A variational calculation by the 
present author [3] indicated that in the molecular orbital approximation the rcg 
orbital of the tBlu state would have a very diffuse form. Recently a quite interesting 
calculation was conducted by Taketa et al. [4] on the oxygen molecule, which 
suggested that the outermost electron in the 3s state would exhibit a very diffuse 
distribution. In view of an important similarity between the 1B1, - 3B~, separation 
of C2H4 and the 3222 _ 322,+ separation of 02, we have initiated a series of in- 
vestigations into the matter and the present work constitutes the first part. 
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CGTO and CSTO 

The concept of the combined Gaussian-type orbital (CGTO) has been discussed 
elsewhere [5]. The same idea can also be applied to linear combinations of Slate> 
type orbitals, hence the CSTO (combined Slater-type orbital). 

For  example, Table 1 shows an approximate expansion of the Hartree-Fock 
(2s) orbital of the carbon atom in terms of primitive Gaussian-type orbitals; 

10 

1D2s = 2 CiN(~ e x p ( - ~  r a ) ,  (1) 
i = 1  

where N(e~) is a normalization factor. We generalize the above function by 
inserting a scaling parameter as follows, 

lO 
g(~) = ~ CiU(~2cq) e x p ( -  ~2e/r2) (2) 

i=1 

with the same {e~, Ci} as in Eq. (1). It is easy to see that ~2s = g(1.0) and if ~P2s is 
normalized to unity, i.e., <~P2s I~P2~> = 1.0, then 

<g(~)lg(~)> = 1.0 

for any value of (. The idea is that we may use g(() as a (2s) orbital in molecular 
calculations just like we do with a single STO, r e x p ( -  ~r), and we call it a CGTO. 

Table 1. CGTO parameters for (ls) and (2s) of the carbon atom a 

i ~i Ci; (1 s) Ci; (2s) 

1 9470.52 0.00045 -0.00010 
2 1397.56 0.00358 -0.00076 
3 307.539 0.01934 -0.00418 
4 84.5419 0.07736 -0.01701 
5 26.9117 0.22679 -0.05399 
6 9.40900 0.42695 -0.12134 
7 3.50002 0.35790 -0.17554 
8 1.06803 0.04877 0.08502 
9 0.40017 -0.00756 0.60689 

10 0.13512 0.00213 0.43809 

a See Huzinaga, S.: J. chem. Physics 42, 1293 (1965). 

In the present work o n  C 2 H 4 ,  the idea is applied to all the atomic orbitals ap- 
pearing in the calculations. 

The idea of CGTO can be much more flexible. Necessary data are given in 
Table 3 to construct a set of CGTO basis functions for the carbon atom from 
which the approximate Hartree-Fock orbitals can be obtained in the form, 

IJ)HF = 2 Ci)~i, (3) 
i 

and each Zl is itself a linear combination of appropriately chosen GTO's. If we 
write 

ni 

Zi((i) = ~ cijN(~2c@ e x p ( -  ~2ezjr2), (4) 
j=x 
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Table 2. C G T O  parameters for (2p) of  the carbon atom" 

i o~ i C i 

1 25.3655 0.00875 
2 5.77636 0.05479 
3 1.78730 0.18263 
4 0.65771 0.35871 
5 0.24805 0.43276 
6 0.091064 0.20347 

a See Huzinaga, S.: J. chem. Physics 42, 1293 (1965). 

then these functions can be used as basis functions in the calculat ion of molecules 
containing the ca rbon  a toms.  The set given in Table  3 consists of four ( ls)-type 
Zi's (n 1 = 3, n 2 = 3, n 3 = 2, n 4 = 3) and two (2p)-type Zi'S (n 1 = 3, n2 = 3). A con- 
venient abbrevia t ion  to indicate the size of the set would be (3, 3, 2, 3; 3, 3) as 
in t roduced elsewhere [5]. With  all (i 's equal  to 1.0, this par t icular  set yields 

- 37.68727 a.u. as the g round  state energy of the ca rbon  a tom.  The corresponding 
value given by the wel l -known best double  STO basis set is -37 .68668  a.u. [6]. 

Actually, the concept  of  the combined  orbitals  can be extended to more  
general class of functions. The general  form of the primit ive G T O  is given by 

where 

(n,l,m;c~)g=Rg,.(r;~) Ytm(O,r (n+l=even), (5) 

Ro,.(r; c~) = (2/re) �88 2"+~[-(2n - 1)!!3 -~ cd +�88 r "-1 exp( c~r2). (6) 

Table 3. (3, 3, 2, 3; 3, 3) C G T O  set for the carbon atom 

Zi J ctij cij 

Zs.1 1 16371.074 
2 2439.1239 
3 545.16766 

Zs,2 1 151.00382 
2 47.803990 
3 16.435665 

X~,3 1 5.9491182 
2 2.2158781 

~s,4 1 0.56937124 
2 0.21811018 
3 0.088432497 

Zp,1 1 24.178811 
2 5.7634925 
3 1.7994821 

Zp,2 1 0.62738153 
2 0.22321395 
3 0.079618113 

0.02120912 
0.16414017 
0.87510685 

0.08646063 
0.28645409 
0.69939809 

0.72521862 
0.31046045 

0.40210571 
0.51738733 
0.14631886 

0.04081133 
0.23370981 
0.81589670 

0.44674694 
0.50433069 
0.18234560 
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The one-center  overlap integral between the orbitals is 

((n,l ,  m; c~)g I (n', l', m';/~)0} 

=SU'Smm ' ( n + n ' - - l ) ! !  ( l + z ) ~ + � 8 8  §188 (7) 
E(2n - 1)!! (2n' - 1)!!]  

where z = (~ - /~)/(e + fi). 
Thus, 

( (n , l ,m;e)ol (n ' , l ' ,m' ; f i )o}=(n, l ,m;~Ze)ol(n ' , l ' ,m' ;~z f i )o} .  (8) 

A similar result can be derived also for Slater-type orbitals. The general form of 
the primitive STO is given by 

(n, l, m; ~)s = E(2n)!] -~ (2~) "+~ r "-1 exp(-c~r)  �9 Ytm(O, d~), (9) 

and 

((n, I, m; ~)s I (n', l', m'; fi)s) 
(n + n') ! 

= 6U'C~mm' E(2n)! (2n')!3~ (1 + ~)"+~ (1 - ~)"'-~, (10) 

where ~ = (e - fi)/(c~ + fi). 
Here, again 

( (n , l ,m;e)s l (n ' , l ' ,m' ; f l )s}=((n, l ,m;~e)~l(n ' , l ' ,m' ;~f l )~} .  (11) 

Because of the convenient  propert ies shown above, we can construct  C G T O ' s  
and CSTO's  which may  contain orbitals of mixed quan tum numbers.  

Hamiltonian and Wavefunctions 

We treat  the ethylene molecule in the planar  form and derive the energy 
formulas in the f ramework  of the A S M O  LCAO method.  The molecule is regarded 
as a system which consists of two n-electrons in a field of a a-core skeleton. The 
construct ion of the energy formulas closely parallels the one described in the 
previous work [-3] but  as one can see below the charge distribution due to the 
(ls) electrons of the carbon a toms is considered explicitly in the Hamil tonian  and 
the geometrical  da ta  are updated  [7];  CC d i s t ance=  1.332A, CH distance 
= 1.084 A, H C H  a n g l e =  115.5 ~ 

The re-electron Hami l ton ian  may be writ ten as (in atomic units) 

where 

= H(1) + H(2) + (1/rl 2 ) , 

H(1) = - ( 1 / 2 ) A  + Uc(1 ) + Uh(1 ) , 

Uc(1) = U , (1 )+  Ub(1), 
4 

u~(1)= Z u.(1), 

Ua(1 ) = _(6/ral)+ j-(1/rlu ) {2gJ(#) + s2(#)+ x z(#) + y2(#)} d V~, 

Un(1 ) = --(1/Fnl ) -t- ~(1/F1# ) h2(#) dV#. 

(12) 
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Similar expressions may be written for H(2). The sa and sa functions are the (ls) 
and (25) orbitals, respectively, on the carbon nucleus a; x a and ya are the (2p) 
orbitals orthogonal to the z~ orb!tal, z,. The (ls) orbital of the hydrogen atom n is 
denoted by h,. 

We specify the n, and rc o molecular orbitals as follows, 

41 = [2(1 + S1) ] -�89 ( z1 ,  a --~ Zl,b) , 
(13) 

(02 = [2(1 - $2) 1-�89 (z2, ~ -z2,b) , 

where S~ = <z~,~ [z~,b), (i = 1, 2). As in the previous work [3], the n atomic orbitals 
z 1 and z 2 are supposed to be different in general. From the above two molecular 
orbitals we obtain the following four linearly independent antisymmetric wave 
functions of the molecule in the singlet and triplet states: 

1Ao: *P2 = (02(1)  (02 (2 )  Xs, (14) 

1Bau:lPv = (1/2) �89 [(01(1) (02(2) + (02(1) (01(2)] X, ,  (15) 

3 B l u  : 1])T = (1/2) ~ [(01 (1) (02 (2) - (02(1) (01(2)] Xt, (16) 

1Ao: 1~1 = (01(1) (01(2) X s ,  (17) 

where X s is the singlet and Xt the triplet spin function of the two electrons. The 
expressions for the expectation value of the Hamiltonian can be written down 
easily in terms of (0~ and (02. The two states ~Pl and ~2 interact with each other. We 
solve a two-dimensional secular equation to pick up the lower root, which we 
denote as E N. 

The characteristic feature of the present calculation is that the atomic orbitals 
are all expressed in the form of CGTO's  with the scaling parameters. Accordingly 
we have computed all the necessary molecular integrals in good accuracy. 

Variational Hartree-Foek Orbitals 

First, we shall use the Hartree-Fock atomic orbitals of the carbon atom in the 
a-core potential in the Hamiltonian (12). This is achieved, to a good approxima- 
tion, by using appropriate GTO expansions of the Hartree-Fock orbitals. The 
general form of the radical parts of the s-type functions, h, ~ and s, may be written as 

10 
CiRo,~(r; ~2~i). (18) 

i=1 

For the orbitals ~ and s, {~i, Ci} are taken from Table 1. Those for h are listed in 
Table 4. The parameter ~ is 1.0 for all of these s-type orbitals. The general form of 
the radial part of the p-type functions, x, y, z I and z2, is given by 

6 
CiRo.2(r; ~2a,), (19) 

where {a i, Ci} are given in Table 2. We put ~ = 1.0 for x and y, which implies that 
we use the unmodified Hartree-Fock (2p) orbitals of the carbon atom for the 
a-core potential. However, for the 2p~z orbitals, Zl and z 2, we retain the scaling 
parameters, ~ and ~2 respectively, as the variational parameters in order to con- 
tract or expand the original form of the Hartree-Fock (2p) orbital. 
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We have evaluated the necessary integrals for a number of combinations of 
~1 and ~2- 

~1 =0.8 (0.1) 1.2, ~2 = 0.1 (0.t) 1.2. 

The energies of the first three states can be calculated individually by the variation 
principle. No attempt has been made to locate the optimum values of ~1 and ~2 
more precisely than the employed grid of 0.1 mesh allows. The optimum values 
are (~1 = 1.0, ~2 = 1.0) for EN, (~1 = 1.0, ~2 =0.9) for E T and (~1 = 1.1, ~2 =0.2) 
for E v. The ionization potential is calculated by the formula, 

I .P .  = <q~l IHI q~) - EN, (20) 
where 

<q51 [ H t q~ > = j" (bl (p) H(#) ~b 1 (#) d V, (21) 

is the energy of the ionized state. The lowest value of ((bl [Hl~b 1) is attained with 
~z = 1.1. The relative positions of the states, N, T and V, are given in Table 6 
together with the ionization potential. 

Variational Slater-Type Orbitals 

Taking advantage of the CGTO representation of atomic orbitals, we have 
conducted variational calculations based on the Slater-type orbitals. The GTO 
expansion of the STO's is discussed in detail by O-ohata et al. [9]. The most 
important point is that if an STO with unit exponent parameter is expressed as 
follows, 

(ns, l, m;  1.0)s = 2 Ci(no, l, m;  o:i)o , (22) 
i 

then 

(n s, 1, m; ~)s = ~ Ci(ng, l, m; ~2cq)o. (23) 
i 

Table 4 contains {cr i, Ci} for (ls) and (2s) STO's with unit exponent parameter, and 
Table 5 for (2p) STO with unit exponent parameter. The following choice of 

Table 4. GTOexpansionsof ( l s )  and (2s) STO'swith unit exponent parameter" 

i ~i;(ls) Ci;(ls ) ~i;(2s) Cd(2s ) 

1 1188.35 0.0000886225 432.099 -0.000163319 
2 156.411 0.000622761 60.6176 -0.00120626 
3 37.9276 0.00318156 14.1623 -0.00600006 
4 10.5140 0.0139344 3.98351 -0.0223909 
5 3.34954 0.0496090 1.30730 -0.0488578 
6 1.18834 0.144647 0.263514 0.0457229 
7 0.458596 0.313305 0.201066 0.265263 
8 0.191073 0.401002 0.0991734 0.527807 
9 0.0848076 0.203216 0.0497851 0.225661 

10 0.0372356 0.0154199 0.0214081 0.00578359 

See O-ohata,  Takata, and Huzinaga [9]. 

2 Theoret. china. Acta (Bed.) Vol. 15 
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Table 5. G T O  expansion of  (2p) STO with unit exponent parameter ~ 

i ct i C i 

1 39.9819 0.000264695 
2 11.5715 0.00165711 
3 3.94709 0.00998253 
4 1.42281 0.0498749 
5 0.548285 0.186151 
6 0.227070 0.419549 
7 0.100995 0.405415 
8 0.0467295 0.0881035 

See O-ohata,  Taketa, and Huzinaga [9]. 

('s, ( = 1.0 for h, ( = 5.7 for g, ( = 1.59 for s, x and y, is equivalent, in good accuracy, 
to use the following set of STO's  for the o--core, 

h ~ e x p ( -  r) ,  

~-~ r e x p ( -  5.7r), 

s, x, y ~ r e x p ( -  1.59r), 

where the radial parts only are indicated. As for the z~ and z2 orbitals, we make  use 
of the Eq. (23): We use {e;, Ci} for (2p) shown in Table 5 but  we insert parameters  
~1 and ~z. This amounts  to using 

z i ,,~ r e x p ( -  ( j r ) ,  (i = 1, 2). 

We have evaluated the  necessary integrals for a number  of combinat ions  of ffl 

and ~2, 
~ = 1.2 (0.2) 1 .8 ,  G = 0.2 (0.2) 1.6.  

In order  to confirm the energy min imum value of E v  at (~1 = 1.6, ~2 = 0.2), we 
performed the calculation also for (~1 = 1.6, ~2 = 0.1). The result of the calculations 
are summarized in Table  6. 

Table 6. Excitation energies and ionization energy for planar ethylene in electron volts 

State Exptl.a H_F  b STO c 

V(1Blu) 7.6 .9.09 6.97 
T(3Blu) 4.6 4.07 4.22 
N(1Ag) 0.0 0.0 0.0 
V -  T 3.0 5.02 2.75 
I.P. 10.52 10.72 8.50 

a See H u z i n a g a  [3] .  
b The variational Hartree-Focktreatment . ( ( l  = t.0, [2 = 1.0) for N,(( x = 1.0, ~2 = 0.9), for T a n d  (~l 

= 1.1, ~2 = 0.2) for V,((1 = 1.1) for <~1 IBIS1>. 
c The variational STO treatment  ((1 = 1.4, (2 = 1.4) for NI (~1 = 1.4, ~2 = 1.2) for T and ((1 = 1.6, 

(2 = 0.2) for V, ((1 = 1.6)for (q~l I HI ~bl >. This result roughly corresponds to the case (e) (Za = 3.18) of 
Table 2 in the previous work [3]. 
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Discussion 

In the variational Hartree-Fock orbital treatment we obtained a bit too large 
V - T  separation but the ionization potential is good. In the variational STO 
treatment the V-Tseparation is good but the ionization potentials is a little too 
small. However, the overall numerical results shown in Table 6 may be regarded 
as fairly satisfactory. An obviously disquieting but yet very interesting fact is that 
the shape of the n o molecular orbital in the 1B1, state turns out to be extremely 
diffuse in both treatments. This was the finding made in the previous work [3]. 
As a matter of fact, the main purpose of the STO treatment in the present work 
has been to check the numerical accuracy of the previous calculation [3], and we 
conclude that the previous calculation has been confirmed essentially. 

The V - T  separation of the ethylene molecule has been playing an important 
role in the parameter adjustment of the semi-empirical molecular calculation. The 
result of the present work seems to call for a more close investigation of the nature 
of the 1B1, state of the ethylene molecule. 
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